Math 206B Lecture 9 Notes

Daniel Raban

January 28, 2019

1 The RSK Algorithm

1.1 Semi-standard Young tablaeux

We will extend the RS-algorithm, which gave a bijection $\Phi: S_n \to \coprod_{|\lambda|=n} \operatorname{SYT}(\lambda)^2$. RSK will give a bijection $\Phi: M(\overline{a}, \overline{b}) \to \coprod_{|\lambda|=N} \operatorname{SSYT}(\lambda, \overline{a}) \times \operatorname{SSYT}(\lambda, \overline{b})$. Here, $\overline{a} = (a_1, \ldots, a_n)$, $\overline{b} = (b_1, \ldots, b_n)$, and $N = |\overline{a}| = |\overline{b}| = a_1 + \cdots + a_n = b_1, \ldots, b_n$. $M(\overline{a}, \overline{b})$ is the set of \mathbb{N}^+ $n \times n$ matrices with row sums a_1, \ldots, a_n and column sums b_1, \ldots, b_n . SSYT (λ, \overline{a}) is the set of semi-standard Young tableaux of shape λ and weight \overline{a} .

Definition 1.1. A semi-standard Young tableau of shape λ is a Young tableau where we are allowed to have numbers reused, and we have numbers are weakly increasing as we go to the right. The **weight** of a semi-standard Young tableau is $(m_1, m_2, ...)$, where m_i is the number of *i*s in *A*.

Example 1.1. If $\overline{a} = \overline{e} = (1, ..., 1)$, then $SSYT(\lambda, \overline{a}) = SYT(\lambda)$. Then $M(\overline{a}, \mathbf{a})$ is the number of 0-1 matrices with ros sums equal to 1 and column sums equal to 1. So the number of such matrices is $|S_n| = n!$. This special case is the case of R-S.

Example 1.2. Let n = 2, and $\overline{a} = (m, m) = \overline{b}$. Then $\#M(\overline{a}, \overline{b}) = m+1$ because the entire matrix is determined by the upper left entry:

The right hand side is $\coprod_{|\lambda|=2m} SSYT(\lambda, \overline{a})^2$. Note that $\lambda = (\lambda_1, \lambda_2)$. Otherwise, $SSYT(\lambda, \overline{a}) = 0$. The number of such λ is m + 1:

1	1		1	1	1
2		2			

This case is very different from the R-S case.

1.2 Description of the algorithm

Given $M \in M(\overline{a}, \overline{b})$, we first need to turn M into a word.

Example 1.3. Here is how we turn a matrix into a word.

$$\begin{bmatrix} 2 & 0 & 3 \\ 1 & 4 & 1 \\ 3 & 1 & 1 \end{bmatrix} \to 1 \ 1 \ 3 \ 3 \ 3 \ 1 \ 2 \ 2 \ 2 \ 3 \ 1 \ 1 \ 1 \ 2 \ 3$$

We have 2 1s, then 0 2s, then 3 3s. Then we have 1 1, 4 2s, and 1 3. Continue like this.

Now we will proceed by applying the R-S bumping procedure to this word.

Example 1.4. Start with the previous word. Our partial outputs are

1	1	3	3	3
1	1	1	3	3
3				
1	1	1	2	3
3	3			
1	1	1	2	2
3	3	3		

and so on.

This gives us an $A \in SSYT(\lambda, \overline{b})$. How do we make our corresponding recording tableau? The numbers that come from row *i* on the matrix get recorded in our recording tableau as *i*. We fill in the shape of the insertion tableau as the shape of the insertion tableau evolves.

Example 1.5. Our partial outputs for the recording tableau are

1	1	1	1	1		
1	1	1	3	3		
2						
1	1	1	2	2		
2	2					
1	1	1	1	1		
2	2	2				

and so on.

1.3 Properties and relationship to representation theory

Theorem 1.1 (Knuth, c. 1980). RSK is a bijection.

Proof. Here is what we need to show:

- 1. Φ is well-defined.
- 2. Φ^{-1} is well-defined.

Like before, we can prove these step by step and induct on the number of steps. \Box

Theorem 1.2. If $\Phi(M) = (A, B)$, then $\Phi(M^{\top}) = (B, A)$.

From representation theory, we had the decomposition $M^{\mu} = \bigoplus_{|\lambda|=n} m_{\lambda,\mu} S^{\lambda}$. Here, $M^{\mu} = \operatorname{ind}_{S_{\mu_1} \times S_{\mu_2} \times \dots}^{S_n} 1$. Take $\overline{a} = (a_1, \dots, a_k)$. We can define $M^{\overline{a}} = \operatorname{ind}_{S_{a_1} \times S_{a_2} \times \dots}^{S_N} 1$, where $N = a_1 + \dots + a_k$.

Theorem 1.3.

$$M^{\overline{a}} = \bigoplus_{|\lambda|=N} m_{\lambda,\overline{a}} S^{\lambda},$$

where $m_{\lambda,\overline{a}} = \# \operatorname{SSYT}(\lambda,\overline{a}).$

Why should this be true?

$$#M(\overline{a}, 1^N) = \frac{N!}{a_1! a_2! \cdots} = \dim(M^{\overline{a}}).$$
$$M(\overline{a}, 1^N) = \sum_{|\lambda|=N} \# \in SSYT(\lambda, \mu) \cdot \# \operatorname{SYT}(\lambda).$$

Now

$$M(\overline{a},\overline{b}) = \langle \chi_{M^{\overline{a}}}, \chi_{M^{\overline{b}}} \rangle = \dim \operatorname{Hom}(M^{\overline{a}}, M^{b}).$$